skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Askari, Roohollah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY Long-period seismic events (LPs) are observed within active volcanoes, hydrothermal systems and hydraulic fracturing. The prevailing model for LP seismic events suggests that they result from pressure disturbances in fluid-filled cracks that generate slow, dispersive waves known as Krauklis waves. These waves oscillate within the crack, causing it to act as a seismic resonator whose far-field radiations are known as LP events. Since these events are generated from fluid-filled cracks, they have been used to analyse fluid transport and fracturing in geological settings. Additionally, they are deemed precursors to volcanic eruptions. However, other mechanisms have been proposed to explain LP seismicity. Thus, a robust interpretation of these events requires understanding all parameters contributing to LP seismicity. To achieve this, for the first time, we have developed a physical model to investigate LP seismicity under controlled-source conditions. The physical model consists of a 30 cm × 15 cm × 0.2 cm crack embedded within a concrete slab with dimensions of 3 m × 3 m × 0.24 m. Using this apparatus, we investigate fundamental factors affecting long-period seismic signals, including crack stiffness, fluid density and viscosity, radiation patterns and triggering location. Our findings are consistent with the theoretical model for Krauklis waves within a fluid-filled crack. In this study, we examine the interplay between fluid properties and characteristics of waves within and radiated from the crack model. Records from a pressure transducer within the crack model have the same frequency characteristics as the surface sensors, indicating that the surface sensors are recording the crack waves. Because the crack stiffness parameters for all the fluids are relatively high, fluid density variations have a larger effect on the crack wave frequency, with higher density fluids yielding lower resonance frequencies. Similarly, the quality factor (Q) decreases with increasing fluid density. We also find that an increase in fluid viscosity along with the increased fluid density results in a decrease in resonance frequency and Q. Trigger locations at the middle of the crack length and width most effectively resonated the first and second transverse modes. Thus, this physical model can offer new horizons in understanding LP seismicity and bridge the gap between theoretical models and observed LP signals. 
    more » « less
  2. The remote sensing of seismic waves in challenging and hazardous environments, such as active volcanic regions, remains a critical yet unresolved challenge. Conventional methods, including laser Doppler interferometry, InSAR, and stereo vision, are often hindered by atmospheric turbulence or necessitate access to observation sites, significantly limiting their applicability. To overcome these constraints, this study introduces a Moiré-based apparatus augmented with active convolved illumination (ACI). The system leverages the displacement-magnifying properties of Moiré patterns to achieve high precision in detecting subtle ground movements. Additionally, ACI effectively mitigates atmospheric fluctuations, reducing the distortion and alteration of measurement signals caused by these fluctuations. We validated the performance of this integrated solution through over 1900 simulations under diverse turbulence intensities. The results illustrate the synergistic capabilities of the Moiré apparatus and ACI in preserving the fidelity of Moiré fringes, enabling reliable displacement measurements even under conditions where passive methods fail. This study establishes a cost-effective, scalable, and non-invasive framework for remote seismic monitoring, offering transformative potential across geophysics, volcanology, structural analysis, metrology, and other domains requiring precise displacement measurements under extreme conditions. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  3. Abstract Krauklis waves are generated by pressure disturbances in fluid‐filled cavities and travel along the solid‐fluid interface. Their far‐field radiation, observed in seismic data from volcanoes or hydraulic fracturing, is known as long‐period events. Characterized by low velocity and resonance, Krauklis waves help estimate fracture size and discern fluids in saturated fractures. Despite numerous theoretical models analyzing Krauklis waves, the existing paradigms are founded on static flow conditions. However, in geological contexts, the assumption of static flow may not be valid. We developed an experimental apparatus using a tri‐layer model consisting of a pair of aluminum plates to examine the effect of fluid flow on Krauklis waves. We employed an infusion syringe pump to inject fluids into the fracture under different flow rates. We used water, oil, and an aqueous solution of Polyethylene glycol as fracture fluids. We calculated resonant frequency, phase velocity, and quality factor to characterize the Krauklis waves. Our findings reveal that an increase in flow rate leads to a higher phase velocity, higher quality factor, and a shift to higher resonant frequency when the flow is in the direction of initial wave propagation while decreasing amplitude. Additionally, when the flow is in the opposite direction of initial wave propagation, we note higher wave absorption and distortion of the Krauklis waves. Our observations unequivocally affirm that fluid flow leaves strong signatures on the Krauklis waves, providing a robust basis for characterizing fluid dynamics within geological settings through the analysis of Krauklis wave. 
    more » « less